
Package: bbsBayes2 (via r-universe)
August 26, 2024

Type Package

Title Hierarchical Bayesian Analysis of North American BBS Data

Version 1.1.1

Imports backports (>= 1.4.1), dplyr (>= 1.1.0), ggrepel, geofacet,
ggplot2 (>= 3.4.0), HDInterval, magrittr, mgcv, posterior (>=
1.2.1), purrr (>= 0.3.4), readr (>= 2.1.2), rlang (>= 0.4.11),
sbtools, sf (>= 1.0.8), spdep (>= 1.2.7), snakecase, stringr,
tidyr (>= 1.2.0), units (>= 0.8.0), withr (>= 2.5.0)

Depends R (>= 3.5)

SystemRequirements CmdStan
(https://mc-stan.org/users/interfaces/cmdstan)

URL https://github.com/bbsBayes/bbsBayes2,

https://bbsbayes.github.io/bbsBayes2/

BugReports https://github.com/bbsBayes/bbsBayes2/issues

NeedsCompilation no

Description The North American Breeding Bird Survey (BBS) is a
long-running program that seeks to monitor the status and
trends of the breeding birds in North America. Since its start
in 1966, the BBS has accumulated over 50 years of data for over
500 species of North American Birds. Given the temporal and
spatial structure of the data, hierarchical Bayesian models are
used to assess the status and trends of these 500+ species of
birds. 'bbsBayes2' allows you to perform hierarchical Bayesian
analysis of BBS data. You can run a full model analysis for one
or more species that you choose, or you can take more control
and specify how the data should be stratified, prepared for
'Stan', or modelled.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

1

https://github.com/bbsBayes/bbsBayes2
https://bbsbayes.github.io/bbsBayes2/
https://github.com/bbsBayes/bbsBayes2/issues

2 Contents

Roxygen list(markdown = TRUE)

Suggests cmdstanr, covr, knitr, rmarkdown, rnaturalearth,
rnaturalearthhires, roxygen2, testthat (>= 3.0.0)

Additional_repositories https://mc-stan.org/r-packages/,

https://ropensci.r-universe.dev

Config/testthat/edition 3

VignetteBuilder knitr

Repository https://bbsbayes.r-universe.dev

RemoteUrl https://github.com/bbsBayes/bbsBayes2

RemoteRef HEAD

RemoteSha abcef3b807bece296f6500360232d109cdc64422

Contents
assign_prov_state . 3
bbsBayes2-defunct . 4
bbsBayes2-deprecated . 4
bbs_data_sample . 5
bbs_models . 5
bbs_strata . 6
copy_model_file . 7
fetch_bbs_data . 8
generate_indices . 9
generate_trends . 12
get_convergence . 15
get_model_vars . 16
get_summary . 17
have_bbs_data . 18
have_cmdstan . 19
load_bbs_data . 19
load_map . 20
pacific_wren_model . 21
plot_geofacet . 22
plot_indices . 23
plot_map . 25
prepare_data . 26
prepare_model . 28
prepare_spatial . 30
remove_cache . 32
run_model . 33
save_model_run . 35
search_species . 36
species_forms . 37
stratify . 38

https://mc-stan.org/r-packages/
https://ropensci.r-universe.dev

assign_prov_state 3

Index 42

assign_prov_state Categorize polygon by Province/State

Description

Categorizes custom stratification polygons by province or state if possible. This can be useful for
calculating regional indices (generate_indices()) or trends (generate_trends()) on a custom
stratification, or if you want to create a geofaceted plot (plot_geofacet()).

Usage

assign_prov_state(
strata_map,
min_overlap = 0.75,
plot = FALSE,
keep_spatial = TRUE

)

Arguments

strata_map sf data frame. Strata polygons to be categorized.

min_overlap Numeric. The minimum proportion of overlap between a stratum polygon and a
Province or State. Overlap below this proportion will raise warnings.

plot Logical. Whether to plot how polygons were assigned to Provinces or States

keep_spatial Logical. Whether the output should be a spatial data frame or not.

Value

(Spatial) data frame with strata assigned to Province/State.

See Also

Other helper functions: load_map(), search_species()

Examples

Demonstration of why we can't divide BCR by Provinces and States!
map <- load_map("bcr")
assign_prov_state(map, plot = TRUE)

Use custom stratification, using sf map object
e.g. with WBPHS stratum boundaries 2019
available: https://ecos.fws.gov/ServCat/Reference/Profile/142628

Not run:
map <- sf::read_sf("../WBPHS_Stratum_Boundaries_2019") %>%

rename(strata_name = STRAT) # expects this column

4 bbsBayes2-deprecated

s <- assign_prov_state(map, plot = TRUE)
Some don't divide nicely, we could try a different min_overlap

s <- assign_prov_state(map, min_overlap = 0.6, plot = TRUE)

End(Not run)

bbsBayes2-defunct bbsBayes2 defunct functions

Description

Superseded:
No superseded functions

No longer relevant:
No non-relevant functions

Arguments

... Original function arguments

See Also

bbsBayes2-deprecated

bbsBayes2-deprecated bbsBayes2 deprecated functions

Description

No deprecated functions

Arguments

... Original function arguments

See Also

bbsBayes2-defunct

bbs_data_sample 5

bbs_data_sample Sample BBS data

Description

Contains only Pacific Wren data

Usage

bbs_data_sample

Format

bbs_data_sample:
A list containing:

• birds - counts of each bird seen per route per
• routes - data for each route run per year
• species - species list of North America

Details

A sample dataset containing only data for Pacific Wrens for the 2022 state-level BBS data. The full
count set is obtained via the function fetch_bbs_data(). The data is obtained from the United
States Geological Survey and is subject to change as new data is added each year. See References
for citation.

Source

https://www.sciencebase.gov/ via fetch_bbs_data()

References

Ziolkowski Jr., D.J., Lutmerding, M., Aponte, V.I., and Hudson, M-A.R., 2022, North American
Breeding Bird Survey Dataset 1966 - 2021: U.S. Geological Survey data release, https://doi.org/10.5066/P97WAZE5

bbs_models Stan models included in bbsBayes2

Description

These models are included in bbsBayes2. The model files themselves can be found in the folder
identified by system.file("models", package = "bbsBayes2"). To create a custom Stan model,
see copy_model_file() and the model_file argument of prepare_model(). See also the models
article for more details.

https://www.sciencebase.gov/
https://bbsBayes.github.io/bbsBayes2/articles/models.html
https://bbsBayes.github.io/bbsBayes2/articles/models.html

6 bbs_strata

Usage

bbs_models

Format

bbs_models:
A data frame with 9 rows and 3 columns:

• model - Model type
– first_diff - First difference models
– gam - General Additive Models (GAM)
– gamye - General Additive Models (GAM) with Year Effect
– slope - Slope models

• variant - Variant of the model to run
– nonhier - Non-hierarchical models (only available for first difference models)
– hier - Hierarchical models
– spatial - Spatial models

• file - Stan model file name

Examples

bbs_models

bbs_strata List of included strata

Description

List of strata included in bbsBayes2. Each list item contains a data frame describing the strata for
that stratification (name, area, country, etc.)

Usage

bbs_strata

Format

bbs_strata:
A list of 5 data frames
Contains bbs_usgs, bbs_cws, bcr, latlong and prov_state

Examples

bbs_strata[["bbs_cws"]]
bbs_strata[["latlon"]]

copy_model_file 7

copy_model_file Copy model file

Description

Save a predefined Stan model file to a local text file for editing. These files can then be used in
prepare_model() by specifying the model_file argument.

Usage

copy_model_file(model, model_variant, dir, overwrite = FALSE)

Arguments

model Character. Type of model to use, must be one of "first_diff" (First Differences),
"gam" (General Additive Model), "gamye" (General Additive Model with Year
Effect), or "slope" (Slope model).

model_variant Character. Model variant to use, must be one of "nonhier" (Non-hierarchical),
"hier" (Hierarchical; default), or "spatial" (Spatially explicit).

dir Character. Directory where file should be saved.

overwrite Logical. Whether to overwrite an existing copy of the model file.

Value

File path to copy of the new model file.

See Also

Other modelling functions: run_model(), save_model_run()

Examples

Save the Slope model in temp directory
copy_model_file(model = "slope", model_variant = "spatial", dir = tempdir())

Overwrite an existing copy
copy_model_file(model = "slope", model_variant = "spatial", dir = tempdir(),

overwrite = TRUE)

Clean up
unlink(file.path(tempdir(), "slope_spatial_bbs_CV_COPY.stan"))

8 fetch_bbs_data

fetch_bbs_data Fetch Breeding Bird Survey dataset

Description

Fetch and download Breeding Bird Survey data from the United States Geological Survey (USGS)
FTP site. This is the raw data that is uploaded to the site before any analyses are performed. Users
can download different types (state, stop) and different releases (currently 2020, 2022, and 2023).

Usage

fetch_bbs_data(
level = "state",
release = 2023,
force = FALSE,
quiet = FALSE,
compression = "none"

)

Arguments

level Character. Which type of BBS counts to use, "state" or "stop". Default "state".

release Numeric. Which yearly release to use, 2022 (including data through 2021 field
season) or 2020 (including data through 2019). Default 2022.

force Logical. Should pre-exising BBS data be overwritten? Default FALSE.

quiet Logical. Suppress progress messages? Default FALSE.

compression Character. What compression should be used to save data? Default is none
which takes up the most space but is the fastest to load. Must be one of none,
gz, bz2, or xz (passed to readr::write_rds()’s compress argument).

Details

Users will be asked before saving the BBS data to a package-specific directory created on their
computer. Before downloading any data, users must thoroughly read through the USGS terms and
conditions for that data and enter the word "yes" to agree.

BBS state level counts provide counts beginning in 1966, aggregated in five bins, each of which
contains cumulative counts from 10 of the 50 stops along a route. In contrast BBS stop level
counts provides stop-level data beginning in 1997, which includes counts for each stop along routes
individually. Note that stop-level data is not currently supported by the modelling utilities in
bbsBayes2.

There are three releases for each type of data, 2020, 2022, and 2023. By default all functions use the
most recent release unless otherwise specified. For example, the release argument in stratify()
can be changed to 2020 to use the 2020 release of state-level counts.

generate_indices 9

See Also

Other BBS data functions: have_bbs_data(), load_bbs_data(), remove_cache()

Examples

fetch_bbs_data(force = TRUE)
fetch_bbs_data(level = "stop", force = TRUE)
fetch_bbs_data(release = 2020, force = TRUE)
fetch_bbs_data(release = 2020, level = "stop", force = TRUE)

generate_indices Regional annual indices of abundance

Description

Calculate annual indices of relative abundance by year for different regions. These indices can then
be used to plot population trajectories for the species, and to estimate trends.

Usage

generate_indices(
model_output = NULL,
quantiles = c(0.025, 0.05, 0.25, 0.75, 0.95, 0.975),
regions = c("continent", "stratum"),
regions_index = NULL,
alternate_n = "n",
start_year = NULL,
max_backcast = NULL,
drop_exclude = FALSE,
hpdi = FALSE,
quiet = FALSE

)

Arguments

model_output List. Model output generated by run_model().
quantiles Numeric. Vector of quantiles to be sampled from the posterior distribution.

Default is c(0.025, 0.05, 0.25, 0.5, 0.75, 0.95, 0.975). Note that these
quantiles will be used to create confidence interval bands in plot_indices()
and by quantiles in generate_trends(), so make sure you specify the ones you
want to use later.

regions Character. Which region(s) to summarize and calculate indices for. Default is
"continent" and "stratum". Options also include "country", "prov_state", "bcr",
and "bcr_by_country". Note that some regions only apply to specific stratifi-
cations. You can also supply a custom region that exists as a column in the
regions_index data frame (see examples for more details).

10 generate_indices

regions_index Data frame. Custom regions to summarize. Data frame must include all strata in
the original data in one column (strata_name), and any custom regions defined
as categories in other columns. See examples for more details.

alternate_n Character. Indicating the name of the alternative annual index parameter in a
model, Default is "n" which for all models represents an index of the estimated
annual relative abundance, scaled as the expected mean count averaged across
all BBS routes and observers in a given stratum and year. For some of the
models included in bbsBayes2, alternatives exist that provide a partial decom-
position of the time-series. For the "gamye" models, the parameter "n_smooth"
represents the smooth-only version of the annual index of relative abundance
(i.e., the component of the annual index estimated by the spline-based smooth
of the GAM). This "n_smooth" is identical to the "n" values for the same model,
but excludes the annual fluctuations. For the "gamye" models, this "n_smooth"
parameter is likely the most natural parameter to use in estimating trends. A
similar option exists for the "slope" models, where the parameter "n_slope" rep-
resents the component of the population trajectory estimated by the log-linear
regression slope parameters in the model. Users should be particularly cautious
about interpreting this "n_slope" values for relatively long time-series. As a con-
tinuous regression slope, it assumes interpreting it as an estimate of population
trajectory and using it to generate trend estimates assumes that there is a single
continuous rate of population change across the entire time-series. Biologically,
this may be reasonable for 10-20 year periods, but will be less reasonable for
longer time-periods.

start_year Numeric. Trim the data record before calculating annual indices.

max_backcast Numeric. The number of years to back cast stratum-level estimates before the
first year that species was observed on any route in that stratum. Default is
NULL, which generates annual indices for the entire time series and ignores
back-casting. CWS national estimates use a back cast of 5. Note that unless
drop_exclude = TRUE, problematic years are only flagged, not omitted. See
Details for more specifics.

drop_exclude Logical. Whether or not strata that exceed the max_backcast threshold should
be excluded from the calculations. Default is FALSE (regions are flagged and
listed but not dropped).

hpdi Logical. Should credible intervals and limits be calculated using highest pos-
terior density intervals instead of simple quantiles of the posterior distribution.
Default is FALSE. these intervals are often a better descriptor of skewed poste-
rior distributions, such as the predicted mean counts that the indices represent.
Note hpd intervals are not stable for small percentages of the posterior distri-
bution, and so hdpi = TRUE is ignored for quantiles values between 0.33 and
0.67 (i.e., if the quantiles value defines a limit for a centered hpd interval that
would include < 33% of the posterior distribution).

quiet Logical. Suppress progress messages? Default FALSE.

Details

max_backcast is a way to deal with the fact that the species of interest may not appear in the data
until several years after the start of the time-series max_backcast specifies how many years can

generate_indices 11

occur before the stratum is flagged. A max_backcast of 5 will flag any stratum without a non-zero
(or non-NA) observation within the first 5 years of the time- series. Note that records are only
flagged unless drop_exclude = TRUE. If you find that the early data record is sparse and results in
the exclusion of many strata, consider trimming the early years by specifying a start_year.

Value

A list containing

• indices - data frame of calculated regional annual indices of abundances

• samples - array of posterior draws from the model

• meta_data - meta data defining the analysis

• meta_strata - data frame listing strata meta data

• raw_data - data frame of summarized counts

indices contains the following columns:

• year - Year of particular index

• region - Region name

• region_type - Type of region

• strata_included - Strata potentially included in the annual index calculations

• strata_excluded - Strata potentially excluded from the annual index calculations because
they have no observations of the species in the first part of the time series, see arguments
max_backcast and start_year

• index - Strata-weighted count index (median)

• index_q_XXX - Strata-weighted count index (by different quantiles)

• obs_mean - Mean observed annual counts of birds across all routes and all years. An al-
ternative estimate of the average relative abundance of the species in the region and year.
Differences between this and the annual indices are a function of the model. For composite
regions (i.e., anything other than stratum-level estimates) this average count is calculated as
an area-weighted average across all strata included

• n_routes - Number of BBS routes that contributed data for this species, region, and year

• n_routes_total - Number of BBS routes that contributed data for this species and region for
all years in the selected time-series, i.e., all years since start_year

• n_non_zero - Number of BBS routes on which this species was observed (i.e., count is > 0)
in this region and year

• backcast_flag - Approximate annual average proportion of the covered species range that
is free of extrapolated population trajectories. e.g., if 1.0, data cover full time-series; if 0.75,
data cover 75 percent of time-series. Only calculated if max_backcast != NULL.

See Also

Other indices and trends functions: generate_trends(), plot_geofacet(), plot_indices(),
plot_map()

12 generate_trends

Examples

Using the example model for Pacific Wrens

Generate the continental and stratum indices
i <- generate_indices(pacific_wren_model)

Generate the continental and stratum indices using hpdi
i <- generate_indices(pacific_wren_model, hpdi = TRUE)

Generate only country indices
i_nat <- generate_indices(pacific_wren_model, regions = "country")

Use a custom region specification (dummy example)
library(dplyr)
ri <- bbs_strata[["bbs_cws"]]
ri <- mutate(ri, my_region = if_else(prov_state %in% "ON",

"Ontario", "Rest"))

Generate indices with these custom regions
i_custom <- generate_indices(

pacific_wren_model,
regions = c("country", "prov_state", "my_region"),
regions_index = ri)

generate_trends Generate regional trends

Description

Generates trends for continent and strata and optionally for countries, states/provinces, or BCRs
from analyses run on the stratifications that support these composite regions. Calculates the geo-
metric mean annual changes in population size for composite regions.

Usage

generate_trends(
indices,
min_year = NULL,
max_year = NULL,
quantiles = c(0.025, 0.05, 0.25, 0.75, 0.95, 0.975),
slope = FALSE,
prob_decrease = NULL,
prob_increase = NULL,
hpdi = FALSE

)

generate_trends 13

Arguments

indices List. Indices generated by generate_indices().

min_year Numeric. Minimum year to use. Default (NULL) uses first year in data.

max_year Numeric. Maximum year to use. Default (NULL) uses first year in data.

quantiles Numeric vector. Quantiles to be sampled from the posterior distribution. De-
faults to c(0.025, 0.05, 0.25, 0.5, 0.75, 0.95, 0.975).

slope Logical. Whether to calculate an alternative trend metric, the slope of a log-
linear regression through the annual indices. Default FALSE, which estimates
the trend as the geometric mean annual rate of change between min_year and
max_year. This is the end-point definition of trend that only directly incorpo-
rates information from the two years, and therefore closely tracks the annual
population fluctuations in those particular years. Conceptually, this metric of
trend tracks the difference between the two years. If TRUE, trend represents
the slope of a linear regression through the log-transformed annual indices of
abundance for all years between min_year and max_year. This definition of
trend is less sensitive to the particular annual fluctuations of a given min_year
and max_year. Either metric may be more or less appropriate given the user’s
desired inference. The appropriate choice of metric may also depend on the
model and the alternate_n choice made in generate_indices. For example
if the fitted model was one of the "gamye" alternatives, and the alternate_n =
"nsmooth", then the default slope = FALSE option will represent the end-point
difference of the smooth component, which already excludes the annual fluctu-
ations and so has similar inferential properties as the slope = TRUE option from
the "first_diff" model.

prob_decrease Numeric vector. Percent-decrease values for which to optionally calculate the
posterior probabilities (see Details). Default is NULL (not calculated). Can range
from 0 to 100.

prob_increase Numeric vector. Percent-increase values for which to optionally calculate the
posterior probabilities (see Details). Default is NULL (not calculated). Can range
from 0 to Inf.

hpdi Logical. Should credible intervals and limits be calculated using highest pos-
terior density intervals instead of simple quantiles of the posterior distribution.
Default is FALSE. these intervals are often a better descriptor of skewed poste-
rior distributions, such as the predicted mean counts that the indices represent.
Note hpd intervals are not stable for small percentages of the posterior distri-
bution, and so hdpi = TRUE is ignored for quantiles values between 0.33 and
0.67 (i.e., if the quantiles value defines a limit for a centered hpd interval that
would include < 33% of the posterior distribution).

Details

The posterior probabilities can be calculated for a percent-decrease (prob_decrease) and/or percent-
increase (prob_increase) if desired. These calculate the probability that the population has de-
creased/increased by at least the amount specified.

For example, a prob_increase = 100 would result in the calculation of the probability that the
population has increased by more than 100% (i.e., doubled) over the period of the trend.

14 generate_trends

Alternatively, a prob_decrease = 50 would result in the calculation of the probability that the pop-
ulation has decreased by more than 50% (i.e., less than half of the population remains) over the
period of the trend.

Value

A list containing

• trends - data frame of calculated population trends, one row for each region in the input
indices

• meta_data - meta data defining the analysis

• meta_strata - data frame listing strata meta data

• raw_data - data frame of summarized counts

trends contains the following columns:

• start_year - First year of the trend

• end_year - Last year of the trend

• region - Region name

• region_type - Type of region

• strata_included - Strata potentially included in the annual index calculations

• strata_excluded - Strata potentially excluded from the annual index calculations because
they have no observations of the species in the first part of the time series, see arguments
max_backcast and start_year

• trend - Estimated median annual percent change over the trend time-period according to end
point comparison of annual indices for the start_year and the end_year

• trend_q_XXX - Trend estimates by different quantiles

• percent_change - Median overall estimate percent change over the trend time-period

• percent_change_q_XXX - Percent change by different quantiles

• slope_trend - Estimated median annual percent change over the trend time-period, according
to the slope of a linear regression through the log-transformed annual indices. (Only if slope
= TRUE)

• slope_trend_q_XXX - Slope-based trend estimates by different quantiles. (Only if slope =
TRUE)

• width_of_95_percent_credible_interval - Width (in percent/year) of the credible in-
terval on the trend calculation. Calculated for the widest credible interval requested in via
quantiles. Default is 95 percent CI (i.e., trend_q_0.975 - trend_q_0.025)

• width_of_95_percent_credible_interval_slope - Width (in percent/year) of the cred-
ible interval on the slope-based trend calculation. Calculated for the widest credible inter-
val requested in via quantiles. Default is 95 percent CI (i.e., slope_trend_q_0.975 -
slope_trend_q_0.025). (Only if slope = TRUE)

• prob_decrease_XX_percent - Proportion of the posterior distribution of percent_change
that is below the percentage values in prob_decrease (if non-Null)

• prob_increase_XX_percent - Proportion of the posterior distribution of percent_change
that is above tthe percentage values in prob_increase (if non-Null)

get_convergence 15

• rel_abundance - Mean annual index value across all years. An estimate of the average rela-
tive abundance of the species in the region. Can be interpreted as the predicted average count
of the species in an average year on an average route by an average observer, for the years,
routes, and observers in the existing data

• obs_rel_abundance - Mean observed annual count of birds across all routes and all years.
An alternative estimate of the average relative abundance of the species in the region. For
composite regions (i.e., anything other than stratum-level estimates) this average count is cal-
culated as an area-weighted average across all strata included.

• n_routes - Number of BBS routes that contributed data for this species and region for all
years in the selected time-series, i.e., all years since start_year

• mean_n_routes - Mean number of BBS routes that contributed data for this species, region,
and year

• n_strata_included - The number of strata included in the region

• backcast_flag - Approximate annual average proportion of the covered species range that
is free of extrapolated population trajectories. e.g., if 1.0, data cover full time-series; if 0.75,
data cover 75 percent of time-series. Only calculated if max_backcast != NULL.

See Also

Other indices and trends functions: generate_indices(), plot_geofacet(), plot_indices(),
plot_map()

Examples

Using the example model for Pacific Wrens...

Generate the continental and stratum indices
i <- generate_indices(pacific_wren_model)

Now, generate the trends
t <- generate_trends(i)

Use the slope method
t <- generate_trends(i, slope = TRUE)

Calculate probability of the population declining by 50%
t <- generate_trends(i, prob_decrease = 50)

get_convergence Convergence metrics

Description

Calculate convergence metrics for the model run. Specifically calculates bulk and tail effective
sample sizes (ess_bulk, ess_tail) and R-hat (rhat). Returns output very similar to get_summary().

16 get_model_vars

Usage

get_convergence(model_output, variables = NULL)

Arguments

model_output List. Model output generated by run_model().

variables Character vector. Specific variables (e.g., "strata_raw[1]") or variable types
(e.g., "strata_raw") for which to calculate metrics. If NULL (default) all vari-
ables are returned.

Value

Data frame of convergence metrics for all model variables. Contains variable_type, variable,
ess_bulk, ess_tail, and rhat.

See Also

Other model assessment functions: get_model_vars(), get_summary()

Examples

Temporarily suppress convergence warning for legibility
"The ESS has been capped to avoid unstable estimates."
opts <- options(warn = -1)

Using the example model for Pacific Wrens

get_convergence(pacific_wren_model)
get_convergence(pacific_wren_model, variables = "strata_raw")
get_convergence(pacific_wren_model, variables = "strata_raw[9]")

Restore warnings
options(opts)

get_model_vars Get model variables

Description

Returns the basic model variables and/or variable types (note that most variables have different
iterations for each strata and each year).

Usage

get_model_vars(model_output, all = FALSE)

get_summary 17

Arguments

model_output List. Model output generated by run_model().

all Logical. Whether or not to return all, specific variables (e.g., strata_raw[1] or
just variable types (e.g., strata_raw). Defaults to FALSE (variable types only).

Value

A character vector of all model variable types.

See Also

Other model assessment functions: get_convergence(), get_summary()

Examples

Using the example model for Pacific Wrens...

List variable types
get_model_vars(pacific_wren_model)

List all variables
get_model_vars(pacific_wren_model, all = TRUE)

get_summary Return the cmdstanr summary

Description

Extract and return the model summary using cmdstanr::summary().

Usage

get_summary(model_output, variables = NULL)

Arguments

model_output List. Model output generated by run_model().

variables Character vector. Specific variables (e.g., "strata_raw[1]") or variable types
(e.g., "strata_raw") for which to calculate metrics. If NULL (default) all vari-
ables are returned.

Value

A data frame of model summary statistics.

18 have_bbs_data

See Also

Other model assessment functions: get_convergence(), get_model_vars()

Examples

Temporarily suppress convergence warning for legibility
"The ESS has been capped to avoid unstable estimates."
opts <- options(warn = -1)

Using the example model for Pacific Wrens

get_summary(pacific_wren_model)
get_summary(pacific_wren_model, variables = "strata_raw")
get_summary(pacific_wren_model, variables = "strata_raw[9]")

Restore warnings
options(opts)

have_bbs_data Check whether BBS data exists locally

Description

Use this function to check if you have the BBS data downloaded and where bbsBayes2 is expecting
to find it. If it returns FALSE, the data is not present; use fetch_bbs_data() to retrieve it.

Usage

have_bbs_data(level = "state", release = 2023, quiet = FALSE)

Arguments

level Character. BBS data to check, one of "all", "state", or "stop". Default "state".

release Character/Numeric. BBS data to check, one of "all", 2020, 2022, or 2023. De-
fault 2023.

quiet Logical. Suppress progress messages? Default FALSE.

Value

TRUE if the data is found, FALSE otherwise

See Also

Other BBS data functions: fetch_bbs_data(), load_bbs_data(), remove_cache()

have_cmdstan 19

Examples

have_bbs_data()
have_bbs_data(release = 2020)
have_bbs_data(release = "all", level = "all")

have_cmdstan Check if cmdstan is installed

Description

Wrapper around cmdstanr::cmdstan_version(error_on_NA = FALSE) for quick check.

Usage

have_cmdstan()

Details

Used internally for skipping examples and tests if no cmdstan installed.

load_bbs_data Load Breeding Bird Survey data

Description

Load the local, minimally processed, raw, unstratified data. The data must have been previously
fetched using fetch_bbs_data(). This function is provided for custom explorations and is not
part of the analysis workflow; stratify() will do the loading for you.

Usage

load_bbs_data(level = "state", release = 2023, sample = FALSE, quiet = TRUE)

Arguments

level Character. Which type of BBS counts to use, "state" or "stop". Default "state".

release Numeric. Which yearly release to use, 2022 (including data through 2021 field
season) or 2020 (including data through 2019). Default 2022.

sample Logical. Whether or not to use the sample data for Pacific Wrens (see ?bbs_data_sample).
Default is FALSE. If TRUE, level and release are ignored.

quiet Logical. Suppress progress messages? Default FALSE.

20 load_map

Value

Large list (3 elements) consisting of:

birds Data frame of sample bird point count data per route, per year

routes Data frame of sample yearly route data

species Sample list of North American bird species

See Also

Other BBS data functions: fetch_bbs_data(), have_bbs_data(), remove_cache()

load_map Load a geographic strata map

Description

Load one of the included spatial data files (maps) as a simple features object (sf package)

Usage

load_map(stratify_by = NULL, type = "strata")

Arguments

stratify_by Character. Stratification type. One of "prov_state", "bcr", "latlong", "bbs_cws",
"bbs_usgs".

type Character. "strata" or political map ("North America", "Canada" or "US"/"USA"/"United
States of America").

Value

sf polygon object

See Also

Other helper functions: assign_prov_state(), search_species()

Examples

Toy example with Pacific Wren sample data
First, stratify the sample data
strat_map <- load_map(stratify_by = "bbs_cws")

simple plot of the map
plot(strat_map)

or use ggplot2
library(ggplot2)

pacific_wren_model 21

ggplot(data = strat_map) +
geom_sf(aes(fill = strata_name), show.legend = FALSE)

pacific_wren_model Example model output

Description

Example model output from running a hierarchical first difference model on the included sample
data for Pacific Wrens.

Usage

pacific_wren_model

Format

pacific_wren_model:
A list output from run_model() with 4 items

• model_fit - cmdstanr model output

• model_data - list of data formatted for use in Stan modelling

• meta_data - meta data defining the analysis

• meta_strata - data frame listing strata meta data

• raw_data - data frame of summarized counts

Examples

Code to replicate:
Not run:
pacific_wren_model <- stratify(by = "bbs_cws", sample_data = TRUE) %>%

prepare_data() %>%
prepare_model(model = "first_diff", set_seed = 111) %>%
run_model(chains = 2, iter_sampling = 20, iter_warmup = 20, set_seed = 111)

End(Not run)

22 plot_geofacet

plot_geofacet Create geofacet plot of population trajectories by province/state

Description

Generate a faceted plot of population trajectories by province/state. Only possible if indices created
by generate_indices() include the prov_state region. All geofacet plots have one facet per
state/province, so if there are multiple strata per facet, these can be plotted as separate trajectories
within each facet (multiple = TRUE).

Usage

plot_geofacet(
indices,
ci_width = 0.95,
multiple = FALSE,
trends = NULL,
slope = FALSE,
add_observed_means = FALSE,
col_viridis = FALSE

)

Arguments

indices List. Indices generated by generate_indices().

ci_width Numeric. Quantile defining the width of the plotted credible interval. Defaults
to 0.95 (lower = 0.025 and upper = 0.975). Note these quantiles need to have
been precalculated in generate_indices().

multiple Logical. Whether to plot multiple strata-level trajectories within each prov/state
facet. Default FALSE.

trends List. (Optional) Output generated by generate_trends(). If included trajec-
tories are coloured based on the same colour scale used in plot_map.

slope Logical. If trends included, whether colours in the plot should be based on
slope trends. Default FALSE.

add_observed_means

Logical. Whether to include points indicating the observed mean counts. De-
fault FALSE. Note: scale of observed means and annual indices may not match
due to imbalanced sampling among routes.

col_viridis Logical. Should the colour-blind-friendly "viridis" palette be used. Default
FALSE.

Value

ggplot object

plot_indices 23

See Also

Other indices and trends functions: generate_indices(), generate_trends(), plot_indices(),
plot_map()

Examples

Using the example model for Pacific Wrens...

Generate indices
i <- generate_indices(pacific_wren_model,

regions = c("stratum", "prov_state"))
Generate trends
t <- generate_trends(i)

Now make the geofacet plot.
plot_geofacet(i, trends = t, multiple = TRUE)
plot_geofacet(i, trends = t, multiple = TRUE, col_viridis = TRUE)
plot_geofacet(i, multiple = TRUE)
plot_geofacet(i, trends = t, multiple = FALSE)
plot_geofacet(i, multiple = FALSE)

With different ci_width, specify desired quantiles in indices
i <- generate_indices(pacific_wren_model,

regions = c("stratum", "prov_state"),
quantiles = c(0.005, 0.995))

plot_geofacet(i, multiple = FALSE, ci_width = 0.99)

plot_indices Generate plots of index trajectories by stratum

Description

Generates the indices plot for each stratum modelled.

Usage

plot_indices(
indices = NULL,
ci_width = 0.95,
min_year = NULL,
max_year = NULL,
title = TRUE,
title_size = 20,
axis_title_size = 18,
axis_text_size = 16,
line_width = 1,

24 plot_indices

add_observed_means = FALSE,
add_number_routes = FALSE

)

Arguments

indices List. Indices generated by generate_indices().

ci_width Numeric. Quantile defining the width of the plotted credible interval. Defaults
to 0.95 (lower = 0.025 and upper = 0.975). Note these quantiles need to have
been precalculated in generate_indices().

min_year Numeric. Minimum year to plot.

max_year Numeric. Maximum year to plot.

title Logical. Whether to include a title on the plot.

title_size Numeric. Font size of plot title. Defaults to 20
axis_title_size

Numeric. Font size of axis titles. Defaults to 18

axis_text_size Numeric. Font size of axis text. Defaults to 16

line_width Numeric. Size of the trajectory line. Defaults to 1
add_observed_means

Logical. Whether to include points indicating the observed mean counts. De-
fault FALSE. Note: scale of observed means and annual indices may not match
due to imbalanced sampling among routes.

add_number_routes

Logical. Whether to superimpose dotplot showing the number of BBS routes
included in each year. This is useful as a visual check on the relative data-density
through time because in most cases the number of observations increases over
time.

Value

List of ggplot2 plots, each item being a plot of a stratum’s indices.

See Also

Other indices and trends functions: generate_indices(), generate_trends(), plot_geofacet(),
plot_map()

Examples

Using the example model for Pacific Wrens...

Generate country, continent, and stratum indices
i <- generate_indices(model_output = pacific_wren_model,

regions = c("country", "continent", "stratum"))

Now, plot_indices() will generate a list of plots for all regions
plots <- plot_indices(i)

plot_map 25

To view any plot, use [[i]]
plots[[1]]

names(plots)

Suppose we wanted to access the continental plot. We could do so with
plots[["continent"]]

You can specify to only plot a subset of years using min_year and max_year

Plots indices from 2015 onward
p_2015_min <- plot_indices(i, min_year = 2015)
p_2015_min[["continent"]]

#Plot up indices up to the year 2017
p_2017_max <- plot_indices(i, max_year = 2017)
p_2017_max[["continent"]]

#Plot indices between 2011 and 2016
p_2011_2016 <- plot_indices(i, min_year = 2011, max_year = 2016)
p_2011_2016[["continent"]]

plot_map Generate a map of trends by strata

Description

plot_map() allows you to generate a colour-coded map of the percent change in species trends for
each strata.

Usage

plot_map(
trends,
slope = FALSE,
title = TRUE,
alternate_column = NULL,
col_viridis = FALSE,
strata_custom = NULL

)

Arguments

trends List. Trends generated by generate_trends().

slope Logical. Whether or not to map values of the alternative trend metric (slope
of a log-linear regression) if slope = TRUE was used in generate_trends(),
through the annual indices. Default FALSE.

26 prepare_data

title Logical. Whether or not to include a title with species. Default TRUE.
alternate_column

Character, Optional name of numerical column in trends dataframe to plot. If
one of the columns with "trend" in the title, (e.g., trend_q_0.05 then the colour
scheme and breaks will match those used in the default trend maps)

col_viridis Logical. Should the colour-blind-friendly "viridis" palette be used. Default
FALSE.

strata_custom (sf) Data Frame. Data frame of modified existing stratification, or a sf spatial
data frame with polygons defining the custom stratifications. See details on
strata_custom in stratify().

Value

a ggplot2 plot

See Also

Other indices and trends functions: generate_indices(), generate_trends(), plot_geofacet(),
plot_indices()

Examples

Using the example model for Pacific Wrens...

Generate the continental and stratum indices
i <- generate_indices(pacific_wren_model)

Now generate trends
t <- generate_trends(i, slope = TRUE)

Generate the map (without slope trends)
plot_map(t)

Generate the map (with slope trends)
plot_map(t, slope = TRUE)

Viridis
plot_map(t, col_viridis = TRUE)

Generate a map (with alternate column - lower 95% Credible limit)
plot_map(t, alternate_column = "trend_q_0.05")

prepare_data Filter for data quality

prepare_data 27

Description

Check and filter the stratified data by minimum required samples for modelling, and prepare data
format for use by models.

Usage

prepare_data(
strata_data,
min_year = NULL,
max_year = NULL,
min_n_routes = 3,
min_max_route_years = 3,
min_mean_route_years = 1,
quiet = FALSE

)

Arguments

strata_data List. Stratified data generated by stratify()

min_year Numeric. Minimum year to use. Default (NULL) uses first year in data.

max_year Numeric. Maximum year to use. Default (NULL) uses first year in data.

min_n_routes Numeric. Required minimum routes per strata where species has been observed.
Default 3.

min_max_route_years

Numeric. Required minimum number of years with non-zero observations of
species on at least 1 route. Default 3. Only retain strata with at least one route
where the species was observed at least once in this many years.

min_mean_route_years

Numeric. Required minimum average of years per route with the species ob-
served. Default 1. Only retain strata where the average number of years the
species was observed per route is greater than this value.

quiet Logical. Suppress progress messages? Default FALSE.

Value

List of prepared (meta) data to be used for modelling and further steps.

• model_data - list of data formatted for use in Stan modelling

• meta_data - meta data defining the analysis

• meta_strata - data frame listing strata meta data

• raw_data - data frame of summarized counts used to create model_data (just formatted more
nicely)

See Also

Other Data prep functions: prepare_model(), prepare_spatial(), stratify()

28 prepare_model

Examples

Toy example with Pacific Wren sample data

First, stratify the sample data

s <- stratify(by = "bbs_cws", sample_data = TRUE)

Prepare the stratified data for use in a model. In this
toy example, we will set the minimum year as 2009 and
maximum year as 2018, effectively only setting up to
model 10 years of data.

p <- prepare_data(s, min_year = 2009, max_year = 2018)

prepare_model Prepare model parameters

Description

Calculate and format the prepared data for use in modelling. Different parameters are definied for
different types of models (see ?bbs_models for a list of models included in bbsBayes2).

Usage

prepare_model(
prepared_data,
model,
model_variant = "hier",
model_file = NULL,
use_pois = FALSE,
heavy_tailed = TRUE,
n_knots = NULL,
basis = "mgcv",
calculate_nu = FALSE,
calculate_log_lik = FALSE,
calculate_cv = FALSE,
cv_k = 10,
cv_fold_groups = "obs_n",
cv_omit_singles = TRUE,
set_seed = NULL,
quiet = FALSE

)

Arguments

prepared_data List. Prepared data generated by prepare_data() (if model-variant is not
spatial) or prepare_spatial() (if model_variant is "spatial").

prepare_model 29

model Character. Type of model to use, must be one of "first_diff" (First Differences),
"gam" (General Additive Model), "gamye" (General Additive Model with Year
Effect), or "slope" (Slope model).

model_variant Character. Model variant to use, must be one of "nonhier" (Non-hierarchical),
"hier" (Hierarchical; default), or "spatial" (Spatially explicit).

model_file Character. Optional location of a custom Stan model file to use.
use_pois Logical. Whether to use an Over-Dispersed Poisson model (TRUE) or an Nega-

tive Binomial model (FALSE; default).
heavy_tailed Logical. Whether extra-Poisson error distributions should be modelled as a t-

distribution, with heavier tails than the standard normal distribution. Default
TRUE. Recent results suggest this is best even though it requires much longer con-
vergence times. Can only be set to FALSE with Poisson models (i.e. use_pois =
TRUE).

n_knots Numeric. Number of knots for "gam" and "gamye" models
basis Character. Basis function to use for GAM smooth, one of "original" or "mgcv".

Default is "original", the same basis used in Smith and Edwards 2020. "mgcv"
is an alternate that uses the "tp" basis from the package mgcv (also used in
brms, and rstanarm). If using the "mgcv" option, the user may want to consider
adjusting the prior distributions for the parameters and their precision.

calculate_nu Logical. Whether to calculate the nu parameter as a factor of gamma(2, 0.1).
Default FALSE.

calculate_log_lik

Logical. Whether to calculate point-wise log-likelihood of the data given the
model. Default FALSE.

calculate_cv Logical. Whether to use bbsBayes2’ cross validation. Note this is experimen-
tal. See Details.

cv_k Numeric. The number of K folds to include (only relevant if calculate_cv =
TRUE). Default 10. Note this is experimental.

cv_fold_groups Character. The data column to use when determining the grouping level of the
observations to be assigned to different fold groups. Must be one of obs_n
(default) or routes (only relevant if calculate_cv = TRUE). Note this is exper-
imental. See the models article for more details.

cv_omit_singles

Logical. Whether to omit test groups with no replication (only relevant if calculate_cv
= TRUE). Default TRUE. See the models article for more details.

set_seed Numeric. If NULL (default) no seed is set. Otherwise an integer number to be
used with withr::with_seed() internally to ensure reproducibility.

quiet Logical. Suppress progress messages? Default FALSE.

Details

There are two ways you can customize the model run. The first is to supply a custom model_file
created with the copy_model_file() function and then edited by hand.

Second, you can edit or overwrite the initialization parameters (init_values) in the output of
prepare_model() to customize the init supplied to cmdstanr::sample(). You can supply these
parameters in anyway that cmdstanr::sample() accepts the init argument.

https://bbsBayes.github.io/bbsBayes2/articles/models.html
https://bbsBayes.github.io/bbsBayes2/articles/models.html

30 prepare_spatial

To implement bbsBayes2’ version of cross validation, set calculate_cv = TRUE. You can set up
your own system for cross validation by modifying the folds list-item in the output of prepare_model().
Note this is considered experimental.
See the models article for more advanced examples and explanations.

Value

A list of prepared data.

• model_data - list of data formatted for use in Stan modelling

• init_values - list of initialization parameters

• folds - a vector of k-fold groups each observation is assigned to (if calculate_cv = TRUE),
or NULL

• meta_data - meta data defining the analysis

• meta_strata - data frame listing strata meta data

• raw_data - data frame of summarized counts used to create model_data (just formatted more
nicely)

See Also

Other Data prep functions: prepare_data(), prepare_spatial(), stratify()

Examples

s <- stratify(by = "bbs_cws", sample_data = TRUE)
p <- prepare_data(s)
pm <- prepare_model(p, model = "first_diff", model_variant = "hier")

prepare_spatial Define neighbouring strata for spatial analyses

Description

Given the prepared data and a spatial data frame of polygons outlining strata, identify a neighbour-
hood matrix for use in modelling.

Usage

prepare_spatial(
prepared_data,
strata_map,
voronoi = FALSE,
nearest_fill = FALSE,
island_link_dist_factor = 1.2,
buffer_type = "buffer",
buffer_dist = 10000,

https://bbsBayes.github.io/bbsBayes2/articles/models.html

prepare_spatial 31

add_map = NULL,
label_size = 3,
quiet = FALSE

)

Arguments

prepared_data List. Prepared data generated by prepare_data().
strata_map sf Data Frame. sf map of the strata in (MULTI)POLYGONs. Must have col-

umn "strata_name" matching strata output from prepare_data().
voronoi Logical. Whether or not to use Voroni method. Default FALSE.
nearest_fill Logical. For strata with no neighbours, whether or not to fill in by centroids of

the 2 nearest neighbours when not using the Voronoi method. Default FALSE.
island_link_dist_factor

Numeric. Distances within a factor of this amount are considered nearest strata
neighbours. Used when linking otherwise isolated islands of strata, when not
using the Voronoi method. Default 1.2.

buffer_type Character. Which buffer type to use when using the Voronoi method. Must be
one of buffer (default) or convex_hull. See Details for specifics.

buffer_dist Numeric. Distance to buffer and link the strata if not connected when using the
Voronoi method. Units are that of sf::st_crs(strata_map). This is the start-
ing distance if buffer_type = "buffer" or the final distance if buffer_type =
"convex_hull". Default 10000. See Details.

add_map sf object. Spatial data to add to map output.
label_size Numeric. Size of the labels on the map. For data with many different strata it

can be useful to reduce the size of the labels. Default 3.
quiet Logical. Suppress progress messages? Default FALSE.

Details

When using the Voronoi method, a buffer is used to fill around and link strata together. If the
buffer_type is buffer, buffer_dist is the starting distance over which to buffer. If not all
strata are linked, this distance is increased by 10% and applied again, repeating until all strata
are linked. If buffer_type is convex_hull, then a convex hull is used to link up the strata be-
fore applying a buffer at a distance of buffer_dist. Note that all distances are in the units of
sf::st_crs(strata_map).

Value

List of prepared (meta) data to be used for modelling and further steps.

• spatial_data - list of samples, nodes, adjacent matrix and map visualizing the matrix
• model_data - list of data formatted for use in Stan modelling
• meta_data - meta data defining the analysis
• meta_strata - data frame listing strata meta data
• raw_data - data frame of summarized counts used to create model_data (just formatted more

nicely)

32 remove_cache

See Also

Other Data prep functions: prepare_data(), prepare_model(), stratify()

Examples

map <- load_map("bbs_cws")
s <- stratify(by = "bbs_cws", sample_data = TRUE)
p <- prepare_data(s, min_max_route_years = 2)
sp <- prepare_spatial(p, map)

Visually explore the spatial linkages
sp$map

Overlay subset strata map on original mapping data
sp <- prepare_spatial(p, map, add_map = map)
sp$map

remove_cache Remove bbsBayes2 cache

Description

Remove all or some of the data downloaded via fetch_bbs_data() as well as model executables
created by cmdstanr::cmdstan_model() via run_model().

Usage

remove_cache(type = "bbs_data", level = "all", release = "all")

Arguments

type Character. Which cached data to remove. One of "all", "bbs_data", or "mod-
els". If "all", removes entire cache directory (and all data contained therein).
If "bbs_data", removes only BBS data downloaded with fetch_bbs_data().
If "models", removes only model executables compiled when run_models() is
run.

level Character. BBS data to remove, one of "all", "state", or "stop". Only applies if
type = "bbs_data". Default "all".

release Character/Numeric. BBS data to remove, one of "all", 2020, 2022, or 2023.
Only applies if type = "bbs_data". Default "all".

Value

Nothing

run_model 33

See Also

Other BBS data functions: fetch_bbs_data(), have_bbs_data(), load_bbs_data()

Examples

Not run:
Remove everything
remove_cache(type = "all")

Remove all BBS data files (but not the dir)
remove_cache(level = "all", release = "all")

Remove all 'stop' data
remove_cache(level = "stop", release = "all")

Remove all 2020 data
remove_cache(level = "all", release = 2020)

Remove 2020 stop data
remove_cache(level = "stop", release = 2020)

Remove all model executables
remove_cache(type = "model")

End(Not run)

run_model Run Bayesian model

Description

Run Bayesian model with cmdstandr::sample()using prepare data and model parameters speci-
fied in previous steps.

Usage

run_model(
model_data,
refresh = 100,
chains = 4,
parallel_chains = 4,
iter_warmup = 1000,
iter_sampling = 1000,
adapt_delta = 0.8,
max_treedepth = 11,
k = NULL,
output_basename = NULL,

34 run_model

output_dir = ".",
save_model = TRUE,
overwrite = FALSE,
retain_csv = FALSE,
set_seed = NULL,
quiet = FALSE,
...

)

Arguments

model_data List. Model data generated by prepare_model().

refresh Numeric. Passed to cmdstanr::sample(). Number of iterations between screen
updates. If 0, only errors are shown.

chains Numeric. Passed to cmdstanr::sample(). Number of Markov chains to run.
parallel_chains

Numeric. Passed to cmdstanr::sample(). Maximum number of chains to run
in parallel.

iter_warmup Numeric. Passed to cmdstanr::sample(). Number of warmup iterations per
chain.

iter_sampling Numeric. Passed to cmdstanr::sample(). Number of sampling (post-warmup)
iterations per chain.

adapt_delta Numeric. Passed to cmdstanr::sample(). The adaptation target acceptance
statistic.

max_treedepth Numeric. Passed to cmdstanr::sample(). The maximum allowed tree depth
for the NUTS engine. See ?cmdstanr::sample.

k Numeric. The K-fold group to run for cross-validation. Only relevant if folds
defined by prepare_model(calculate_cv = TRUE) or custom definition. See
?prepare_model or the models article for more details.

output_basename

Character. Name of the files created as part of the Stan model run and the final
model output RDS file if save_model = TRUE. Defaults to a character string that
is unique to the species, model, model_variant, and system time of model_run()
call (nearest minute).

output_dir Character. Directory in which all model files will be created. Defaults to the
working directory, but recommend that the user sets this to a particular existing
directory for better file organization.

save_model Logical. Whether or not to save the model output to file as an RDS object with
all required data. Defaults to TRUE.

overwrite Logical. Whether to overwrite an existing model output file when saving.

retain_csv Logical. Whether to retain the Stan csv files after the model has finished running
and the fitted object has been saved. Defaults to FALSE because csv files dupli-
cate information saved in the model output file save object, when save_model =
TRUE, and so for file organization and efficient use of memory, these are deleted
by default.

https://bbsBayes.github.io/bbsBayes2/articles/models.html

save_model_run 35

set_seed Numeric. If NULL (default) no seed is set. Otherwise an integer number to be
used with withr::with_seed() internally to ensure reproducibility.

quiet Logical. Suppress progress messages? Default FALSE.

... Other arguments passed on to cmdstanr::sample().

Details

The model is set up in prepare_model(). The run_model() function does the final (and often
long-running) step of actually running the model. Here is where you can tweak how the model will
be run (iterations etc.).

See the models article for more advanced examples and explanations.

Value

List model fit and other (meta) data.

• model_fit - cmdstanr model output

• model_data - list of data formatted for use in Stan modelling

• meta_data - meta data defining the analysis

• meta_strata - data frame listing strata meta data

• raw_data - data frame of summarized counts

See Also

Other modelling functions: copy_model_file(), save_model_run()

Examples

s <- stratify(by = "bbs_cws", sample_data = TRUE)
p <- prepare_data(s)
pm <- prepare_model(p, model = "first_diff", model_variant = "hier")

Run model (quick and dirty)
m <- run_model(pm, iter_warmup = 20, iter_sampling = 20, chains = 2)

save_model_run Save output of run_model()

Description

This function closely imitates cmdstanr::save_object() but saves the entire model output object
from run_model() which contains more details regarding data preparation (stratification etc.).

Usage

save_model_run(model_output, retain_csv = TRUE, path = NULL, quiet = FALSE)

https://bbsBayes.github.io/bbsBayes2/articles/models.html

36 search_species

Arguments

model_output List. Model output generated by run_model().

retain_csv Logical Should the Stan csv files be retained. Defaults to TRUE if user calls
function directly. However, when this function is called internally by run_model
this is set to FALSE.

path Character. Optional file path to use for saved data. Defaults to the file path used
for the original run.

quiet Logical. Suppress progress messages? Default FALSE.

Details

Files are saved to path, or if not provided, to the original location of the Stan model run files (if the
original files exist).

Value

Nothing. Creates an .rds file at path.

See Also

Other modelling functions: copy_model_file(), run_model()

Examples

By default, the model is saved as an RDS file during `run_model()`

But you can also deliberately save the file (here with an example model)
save_model_run(pacific_wren_model, path = "my_model.rds")

Clean up
unlink("my_model.rds")

search_species Search for species

Description

A helper function for finding the appropriate species name for use in stratify().

Usage

search_species(species, combine_species_forms = TRUE)

species_forms 37

Arguments

species Character/Numeric. Search term, either name in English or French, AOU code,
or scientific genus or species. Matches by regular expression but ignores case.

combine_species_forms

Logical. Whether or not to search the combined species data or the uncombined
species. Note that this results in different species names.

Value

Subset of the BBS species data frame matching the species pattern.

See Also

Other helper functions: assign_prov_state(), load_map()

Examples

Search for various terms
search_species("Paridae")
search_species("chickadee")
search_species("mésang")
search_species("Poecile")
search_species(7360)
search_species(73)
search_species("^73") # Use regex to match aou codes starting with 73
search_species("blue grouse")
search_species("sooty grouse")

To combine or not
search_species("blue grouse", combine_species_forms = FALSE)
search_species("sooty grouse", combine_species_forms = FALSE)
search_species("northern flicker")
search_species("northern flicker", combine_species_forms = FALSE)

species_forms Species forms

Description

Species forms which will be combined if combine_species_forms is TRUE in stratify().

Usage

species_forms

38 stratify

Format

species_forms:
A data frame with 13 rows and 5 columns

• aou_unid - The AOU id number which will identify the combined unidentified form
• ensligh_original - The English name of the original ’unidentified’ form
• english_combined - The English name of the new ’combined’ forms
• french_combined - The French name of the new ’combined’ forms
• aou_id - The AOU id numbers of all the forms which will be combined

Examples

species_forms

stratify Stratify and filter Breeding Bird Survey data

Description

Assign count data to strata and filter by species of interest. Routes are assigned to strata based on
their geographic location and the stratification specified by the user. Species are filtered by matching
English, French or Scientific names to those in the BBS species data (see search_species() for a
flexible search to identify correct species names).

Usage

stratify(
by,
species,
strata_custom = NULL,
combine_species_forms = TRUE,
release = 2023,
sample_data = FALSE,
return_omitted = FALSE,
quiet = FALSE

)

Arguments

by Character. Stratification type. Either an established type, one of "prov_state",
"bcr", "latlong", "bbs_cws", "bbs_usgs", or a custom name (see strata_custom
for details).

species Character. Bird species of interest. Can be specified by English, French, or
Scientific names, or AOU code. Use search_species() for loose matching to
find the exact name/code needed.

strata_custom (sf) Data Frame. Data frame of modified existing stratification, or a sf spatial
data frame with polygons defining the custom stratifications. See Details.

stratify 39

combine_species_forms

Logical. Whether to combine ambiguous species forms. Default TRUE. See
Details.

release Numeric. Which yearly release to use, 2022 (including data through 2021 field
season) or 2020 (including data through 2019). Default 2022.

sample_data Logical. Use sample data (just Pacific Wrens). Default FALSE.

return_omitted Logical. Whether or not to return a data frame of route-years which were omit-
ted during stratification as they did not overlap with any stratum. For checking
and troubleshooting. Default FALSE.

quiet Logical. Suppress progress messages? Default FALSE.

Details

To define a custom subset of an existing stratification, specify the stratification in by (e.g., "bbs_cws")
and then supply a subset of bbs_strata[["bbc_cws"]] to strata_custom (see examples).

To define a completely new custom stratification, specify the name you would like use in by (e.g.,
"east_west_divide") and then supply a spatial data frame with polygons identifying the different
strata to strata_custom. Note that this data must have a column called strata_name which names
all the strata contained (see examples).

If combine_species_forms is TRUE (default), species with multiple forms (e.g., "unid. Dusky
Grouse / Sooty Grouse") are included in overall species groupings (i.e., "unid." are combined
with "Dusky Grouse" and "Sooty Grouse" into "Blue Grouse (Dusky/Sooty)"). If the user wishes
to keep the forms separate, combine_species_forms can be set to FALSE. See the data frame
species_forms, for which species are set to be combined with which other species.

See vignette("stratification", package = "bbsBayes2") and the article custom stratification
for more details.

Value

List of (meta) data.

• meta_data - meta data defining the analysis

• meta_strata - data frame listing strata names and area for all strata relevant to the data (i.e.
some may have been removed due to lack of count data). Contains at least strata_name (the
label of the stratum), and area_sq_km (area of the stratum).

• birds_strata - data frame of stratified count-level data filtered by species

• routes_strata - data frame of stratified route-level data filtered by species

See Also

Other Data prep functions: prepare_data(), prepare_model(), prepare_spatial()

Examples

Sample Data - USGS BBS strata
s <- stratify(by = "bbs_usgs", sample_data = TRUE)

https://bbsBayes.github.io/bbsBayes2/articles/custom_stratification.html

40 stratify

Full data - species and stratification
Use `search_species()` to get correct species name

Stratify by CWS BBS strata
s <- stratify(by = "bbs_cws", species = "Common Loon")

Use use English, French, Scientific, or AOU codes for species names
s <- stratify(by = "bbs_cws", species = "Plongeon huard")
s <- stratify(by = "bbs_cws", species = 70)
s <- stratify(by = "bbs_cws", species = "Gavia immer")

Stratify by Bird Conservation Regions
s <- stratify(by = "bcr", species = "Great Horned Owl")

Stratify by CWS BBS strata
s <- stratify(by = "bbs_cws", species = "Canada Jay")

Stratify by State/Province/Territory only
s <- stratify(by = "prov_state", species = "Common Loon")
s <- stratify(by = "prov_state", species = "Plongeon huard")
s <- stratify(by = "prov_state", species = 70)

Stratify by blocks of 1 degree of latitude X 1 degree of longitude
s <- stratify(by = "latlong", species = "Snowy Owl")

Check routes omitted by stratification
s <- stratify(by = "latlong", species = "Snowy Owl", return_omitted = TRUE)
s[["routes_omitted"]]

Use combined or non-combined species forms

search_species("Sooty grouse")
s <- stratify(by = "bbs_usgs", species = "Blue Grouse (Dusky/Sooty)")
nrow(s$birds_strata) # Contains all Dusky, Sooty and unidentified

search_species("Sooty grouse", combine_species_forms = FALSE)
s <- stratify(by = "bbs_usgs", species = "unid. Dusky Grouse / Sooty Grouse",

combine_species_forms = FALSE)
nrow(s$birds_strata) # Contains *only* unidentified

Stratify by a subset of an existing stratification
library(dplyr)
my_cws <- filter(bbs_strata[["bbs_cws"]], country_code == "CA")
s <- stratify(by = "bbs_cws", strata_custom = my_cws, species = "Snowy Owl")

my_bcr <- filter(bbs_strata[["bcr"]], strata_name == "BCR8")
s <- stratify(by = "bcr", strata_custom = my_bcr,

species = "Yellow-rumped Warbler (all forms)")

Stratify by Custom stratification, using sf map object

stratify 41

e.g. with WBPHS stratum boundaries 2019
available: https://ecos.fws.gov/ServCat/Reference/Profile/142628

Not run:
map <- sf::read_sf("../WBPHS_Stratum_Boundaries_2019") %>%

rename(strata_name = STRAT) # stratify expects this column

s <- stratify(by = "WBPHS_2019", strata_map = map)

End(Not run)

Index

∗ BBS data functions
fetch_bbs_data, 8
have_bbs_data, 18
load_bbs_data, 19
remove_cache, 32

∗ Data prep functions
prepare_data, 26
prepare_model, 28
prepare_spatial, 30
stratify, 38

∗ datasets
bbs_data_sample, 5
bbs_models, 5
bbs_strata, 6
pacific_wren_model, 21
species_forms, 37

∗ helper functions
assign_prov_state, 3
load_map, 20
search_species, 36

∗ indices and trends functions
generate_indices, 9
generate_trends, 12
plot_geofacet, 22
plot_indices, 23
plot_map, 25

∗ model assessment functions
get_convergence, 15
get_model_vars, 16
get_summary, 17

∗ modelling functions
copy_model_file, 7
run_model, 33
save_model_run, 35

assign_prov_state, 3, 20, 37

bbs_data_sample, 5
bbs_models, 5
bbs_strata, 6

bbsBayes2-defunct, 4, 4
bbsBayes2-deprecated, 4, 4

copy_model_file, 7, 35, 36

fetch_bbs_data, 8, 18, 20, 33

generate_indices, 9, 15, 23, 24, 26
generate_trends, 11, 12, 23, 24, 26
get_convergence, 15, 17, 18
get_model_vars, 16, 16, 18
get_summary, 16, 17, 17

have_bbs_data, 9, 18, 20, 33
have_cmdstan, 19

load_bbs_data, 9, 18, 19, 33
load_map, 3, 20, 37

pacific_wren_model, 21
plot_geofacet, 11, 15, 22, 24, 26
plot_indices, 11, 15, 23, 23, 26
plot_map, 11, 15, 23, 24, 25
prepare_data, 26, 30, 32, 39
prepare_model, 27, 28, 32, 39
prepare_spatial, 27, 30, 30, 39

remove_cache, 9, 18, 20, 32
run_model, 7, 33, 36

save_model_run, 7, 35, 35
search_species, 3, 20, 36
species_forms, 37
stratify, 27, 30, 32, 38

42

	assign_prov_state
	bbsBayes2-defunct
	bbsBayes2-deprecated
	bbs_data_sample
	bbs_models
	bbs_strata
	copy_model_file
	fetch_bbs_data
	generate_indices
	generate_trends
	get_convergence
	get_model_vars
	get_summary
	have_bbs_data
	have_cmdstan
	load_bbs_data
	load_map
	pacific_wren_model
	plot_geofacet
	plot_indices
	plot_map
	prepare_data
	prepare_model
	prepare_spatial
	remove_cache
	run_model
	save_model_run
	search_species
	species_forms
	stratify
	Index

